Personalized recommendation with corrected similarity
نویسندگان
چکیده
منابع مشابه
Personalized recommendation with corrected similarity
Personalized recommendation attracts a surge of interdisciplinary researches. Especially, similarity based methods in applications of real recommendation systems achieve great success. However, the computations of similarities are overestimated or underestimated outstandingly due to the defective strategy of unidirectional similarity estimation. In this paper, we solve this drawback by leveragi...
متن کاملA Personalized Recommendation Algorithm on Integration of Item Semantic Similarity and Item Rating Similarity
With the rapid development of the Internet and the wide application of e-commerce, recommender system has become a necessity and collaborative filtering is the most successful technology for building recommendation systems. There are many problems in the recommendation approaches, such as data sparsity problem, the issue of new items and scalability issues. Item-based collaborative filtering al...
متن کاملPersonalized Food Recommendation
In this paper a food recommender system giving general and personalized advice is described. The system is based on semi-formal knowledge of personal nutrition gained in a previous project (Food4Me). This project implements a manual expert knowledge based approach using a decision tree for recommending optimal adaptions to the individual nutrition behavior. The system was evaluated in a Proof-o...
متن کاملPersonalized Opinion-Based Recommendation
E-commerce recommender systems seek out matches between customers and items in order to help customers discover more relevant and satisfying products and to increase the conversion rate of browsers to buyers. To do this, a recommender system must learn about the likes and dislikes of customers/users as well as the advantages and disadvantages (pros and cons) of products. Recently, the explosion...
متن کاملDiversifying Personalized Recommendation with User-session Context
Recommender systems (RS) have become an integral part of our daily life. However, most current RS often repeatedly recommend items to users with similar profiles. We argue that recommendation should be diversified by leveraging session contexts with personalized user profiles. For this, current session-based RS (SBRS) often assume a rigidly ordered sequence over data which does not fit in many ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Mechanics: Theory and Experiment
سال: 2014
ISSN: 1742-5468
DOI: 10.1088/1742-5468/2014/07/p07004